
Chapter 1

Introduction to Error-Correcting

Codes and Motivation

1.1 An example : sending a path

Suppose that a drone and a control station have identical maps grid as shown in the

following �gure.

The control station can transmit data to drone of a safe route by which drone can avoid

obstacles.

In this situation reliability is more important than speed of transmission.
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If we encode the four directions North (N),South (S),E (East) ,West (W), the path to be

sent is then

NEEESEENEE

Naive approach

We could encode the four directions North (N),South (S),E (East) ,West (W) using binary

code, one code could be :

C1 =

8>>>>>><>>>>>>:

00 = N

01 = W

10 = E

11 = S

The path to be sent is then :

00101010111010001010

If we introduce an error

00|{z}
N

10|{z}
E

10|{z}
E

10|{z}
E

11|{z}
S

10|{z}
E

11|{z}
S

00|{z}
N

10|{z}
E

10|{z}
E

The receiver in unable to check for errors

Sending a path (Adding redundancy)

We could add redundancy in order to protect these message vectors against noise , con-

sider the length 3 code C2 as follows :

C2 =

8>>>>>><>>>>>>:

000 = N

011 = W

101 = E

110 = S
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The path to be send is NEEESEENEE

000|{z} 101|{z} 101|{z} 101|{z} 110|{z} 101|{z} 111|{z} 000|{z} 101|{z} 101|{z}
If we introduce one error than we notice that 111 is not a valid code.

Notice that if we introduce one error in any position then it will be detected.

N One error Remark

000 100 Not a code

000 010 Not a code

000 001 Not a code

W One error Remark

011 111 Not a code

011 001 Not a code

011 010 Not a code

E One error Remark

101 001 Not a code

101 111 Not a code

101 101 Not a code

E One error Remark

110 010 Not a code

110 100 Not a code

110 111 Not a code

Notice that if we can detect one error we are unable to correct it for example 111

could be 101 or 011.

Error correction

In this example we consider the following code : 25 = 32 43 = 64

C3 =

8>>>>>><>>>>>>:

00000 = N

01101 = W

10110 = E

11011 = S

If a single error occurs in any codeword of C3 we are able not only to detect it but actually

to correct it, since the received vector will still be closer to the transmitted one than to

any other.
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00000| {z } 10110| {z } 10110| {z } 10110| {z } 11011| {z } 10110| {z } 10110| {z } 00000| {z } 10110| {z } 10110| {z }
We will check this for 10110, others are similar

E One error Remark Closest vestor

10110 00110 Not a code 10110

10110 11110 Not a code 10110

10110 10010 Not a code 10110

10110 10100 Not a code 10110

10110 10111 Not a code 10110

1.1.1 Basic de�nitions

De�nition 1 .

1- Let A be a �nite set called an alphabet , en element of A is referred to as a letter.

2- A �nite word is a sequence of elements of A. The length of a �nite word u = u0...un¡1 2
An is juj = n.

3- The set of �nite words is given by A¤= [1n=0An. The set A0 = fλg, where λ is the

empty word.

4- We denote by AN the set of in�nite words over A and by AZ the set of bi-in�nite

sequences over A.
5- For two integers i, j with i < j we denote by x (i, j) the word xi...xj.

6- The length of an in�nite word is denoted by 1.

For an element of AZ we may use a decimal notation to avoid confusion. The �rst

element to the right of the decimal point denoting position 0.

For example x = ...000.100.. of f0,1gZ has a one at position zero (x0 = 1) .

De�nition 2 .

1- Let u = u0...un¡1 and v = v0...vm¡1 be two �nite words, the concatenation of the words
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u and v is denoted by uv = u0...un¡1v0...vm¡1.

2- We say that the word u is a factor of v and denote u v v if there is two words x, y

such that xuy = v.

3- If x = λ the word u is said a pre�x of v and we denote it by u vp v.

4- If y = λ the word u is said a su¢x of v and we denote it by u vs v.

5- If u is a non empty �nite word we denote by u1 2 AN the in�nite concatenation of u.

The set of �nite words A¤ equipped with the concatenation operation is a monoid.

i.e. has the associative property and λ is the neutral element.

De�nition 3 The Hamming distance between two words x and y of An is the number of

coordinates in which they are di¤erent :

dH(x, y) =
nX
i=1

δ(xi, yi)

δ(xi, yi) = 1 if xi 6= yi and 0 otherwise

1.1.2 The coding problem

Let A be an alphabet, we want to send information written as words of constant length

1.

The transmission being subject to some form of alteration due to noise, the received

word may be di¤erent from the original one.

Decoding is the process we apply to recover the original message.

1It is possible to use words of varying lenghts but for now we consider only the constant lenght cases.
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Let A be an alphabet of q elements and suppose that we want to encode words of

length k using words of length n.

A code C is a subset of An an element of C is often called a codeword or a vectorcode

to distinguish it from any other element from AnnC.
Let us go back to our example of sending a path.

The 4 elements to be coded are the four simple directions : N,E,S,W.

It is possible then to use any set with cardinality greater than 4. For example we may

use f0, 1g3 or f0, 1g5 .
We can then view the encoding problem as de�ning a map from f0, 1g2 to f0, 1gn for

n > 2.

Example 4 .

Notice from precedent examples that the closest codeword is the decoded word, this

method is systematically used , a word which is not a codeword cannot be decoded if
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there are ambiguities.

De�nition 5 Let C ½ An be a code. We de�ne the minimum distance over dH by :

d (C) = min fdH (x, y) : x, y 2 C, x 6= yg

Proposition 6 .

1) A code C can detect up to s errors in any codeword if d (C) ¸ s+ 1.

2) A code C can correct up to t errors in any codeword if d (C) ¸ 2t+ 1.

Proof. 1) Suppose a codeword x is transmitted and that the number of errors is less

than or equal to s.

Denote by x0 the received word we have then dH (x, x0) = s this means that x0 /2 C.

2) Suppose d (C) ¸ 2t + 1 and suppose that a codeword x is transmitted and the

vector x0 received in which t or fewer errors have occurred so that d (x, x0) · t.

If y is any codeword other than x then we should have d (y, x0) ¸ t + 1. Otherwise

d (x, x0) · d (x, y) + d (y, x0) · 2t (contradiction)

So x0 is the nearest codeword to x and nearest neighbor decoding corrects the errors.

1.1.3 Hamming bound

The Hamming bound is a limit on the parameters of an arbitrary code. It gives an

important limitation on the e¢ciency with which any error-correcting code can utilize

the space in which its code words are embedded. A code that attains the Hamming

bound is said to be a perfect code.

For any codeword x 2 C the balls

Bt (x) = fy 2 An : dH (x, y) · tg
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We will count the number of elements of Bt (x)¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

Number of di¤erent letters Number of possibilities

0 1

1 (jAj ¡ 1)C1
n

2 (jAj ¡ 1)2C2
n

... ...

t (jAj ¡ 1)tCt
n

Hence

jBt (x)j = 1 + (jAj ¡ 1)C1
n + ... (jAj ¡ 1)tCt

n =
tP

k=0

(jAj ¡ 1)k Ck
n

We have then

jCj
tP

k=0

(jAj ¡ 1)k Ck
n · jAjn

The last inequality is called the Hamming bound on a code.
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1.1.4 Algorithmic e¢ciency and algorithmic complexity

There might be several algorithms or programs for the same problem, the concept of

complexity allows us to compare several methods to evaluate the least expensive in com-

putation time.The arithmetic cost of a method is the number of arithmetic operations

necessary for its completion; it is also called arithmetic complexity. We use the Landau

notation O to indicate the asymptotic behavior of complexity.

Let us study some basic examples.

1.1.5 Power evaluation

1. Naive method.

We want to write a program to compute xn for given values of x and n.

A �rst approach is using successive multiplication :

xn = x£ x£ .....£ x| {z }
(n¡1) times

The cost of this method is (n¡ 1) multiplications so the complexity is O (n) .

2. Dichotomic exponentiation.

The dichotomic exponentiation is summarized by the following formula :

xn =

8>>>>>><>>>>>>:

Ã
x

n

2

!2

if n is even

x

0@x

n¡ 1

2

1A2

if n is odd

Example 7 For example x16 = (x8)
2
=
³
(x4)

2
´2

=

µ³
((x2))

2
´2¶2

and we need 4 mul-

tiplications in order to compute x16 instead of 15 operations for the naive method.

The cost of the exponentiation method may be evaluated using the following method
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.

Denote by CostDicho (n) the cost to evaluate xn.

If n = 2m is a pure power of 2 then we have :

CostDicho (n) = CostDicho
³n
2

´
+ 1

= CostDicho
³n
4

´
+ 2

= ....

= CostDicho (1) +m

So the cost is O (ln2 (n))

1.1.6 Polynomial evaluation : Horner�s method

The Horner algorithm aims to avoid the evaluation of successive powers of x, the idea

consists of a repeated evaluation of a polynomial of degree 1, thus a polynomial P of

degree n will be evaluated according to the following technique:¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

P (x) = anx
n + an¡1xn¡1....+ a3x

3 + a2x
2 + a1x+ a0

= (anx
n¡1 + an¡1xn¡2....+ a3x

2 + a2x+ a1)x+ a0

..............................

=

0BBBB@
0BBBB@
0BBBB@
0@anx+ an¡1| {z }

P1

1Ax+ an¡2| {z }
P2

....+ a3

1CCCCAx+ a2

1CCCCAx+ a1

1CCCCAx+ a0

This may be denoted by the following formula :8<: P0 = an

Pi = Pi¡1x+ an¡i 1 · i · n

The cost of this method can be evaluated as follows :
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¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

P1 = P0x+ an¡1 1 addition+ 1 multiplication

P2 = P1x+ an¡2 1 addition+ 1 multiplication

P3 = P2x+ an¡3 1 addition+ 1 multiplication

................... 1 addition+ 1 multiplication

Pn = Pn¡1x+ a0 1 addition+ 1 multiplication

The cost of the Horner�s method is then n multiplications + n additions or 2n operations.

The complexity is then O (n) .
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Chapter 2

Linear codes

2.1 Introduction

In this chapter we suppose that the alphabet A has a �eld structure, this allows us to

treat An as a linear space.

A linear code is simply any subspace of An. As a consequence of the linearity the

word 0nA is always a codeword.

De�nition 8 Let x = x0...xn¡1 2 An the weight of the word x denoted by w (x) is the

number of letters of x di¤erent from 0A.

w (u) = jf0 · i · n¡ 1 : xi 6= 0Agj

From the de�nition we have w (x) = 0 if and only if x is 0n, the weight function check

the triangular inequality w (x+ y) · w (x) + w (y) , however the weight function is not

a norm.

There is an interesting relation between the minimum distance of a code and the

concept of weight.

dH (x, y) = dH (x¡ y, y ¡ y) = dH (x¡ y, 0A) = w (x¡ y)
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De�nition 9 Let us denote by w (C) the smallest of the weights of the non-zero code-

words of C

w (C) = min fw (x) , x 2 Cn f0nAgg

Proposition 10 Let C be a linear code and let w(C) be the smallest of the weights of

the non-zero codewords of C. Then d(C) = w(C).

2.1.1 Generator matrix

As a linear code C is a linear space we can found a generator matrix.

De�nition 11 A generator matrix G is a matrix of dimension (n£ k) such that :

C =
©
G.x : x 2 Ak

ª
Example 12 We want to encode elements from f0, 1g3 using the generator matrix G :

G =

0BBBBBBBBB@

1 1 1

1 0 1

1 0 0

1 0 0

1 1 0

1CCCCCCCCCA
Each codeword has the form

G.x =

0BBBBBBBBB@

1 1 1

1 0 1

1 0 0

0 0 1

1 1 0

1CCCCCCCCCA

0BBB@
x1

x2

x3

1CCCA =

0BBBBBBBBB@

x1 + x2 + x3

x1 + x3

x1

x3

x1 + x2

1CCCCCCCCCA
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Hence the code C is given by :

C =
©
(x1 + x2 + x3, x1 + x3, x1, x3, x1 + x2) , (x1, x2, x3) 2 f0, 1g3

ª
Remark 13 Some references uses the notation x.G to denote Generator, in this case

the generator matrix is imply the transpose of the one from the notation G.x and the x

is supposed a vector of dimension (1£ k)

Example 14 Consider the following linear code generated by G0

G0 =

0BBB@
1 1 1 0 1

1 0 0 0 1

1 1 0 1 0

1CCCA
Each codeword has the form

³
x1 x2 x3

´0BBB@
1 1 1 0 1

1 0 0 0 1

1 1 0 1 0

1CCCA =
³
x1 + x2 + x3 x1 + x3 x1 x3 x1 + x2

´

Hence the code C is given by :

C =
©
(x1 + x2 + x3, x1 + x3, x1, x3, x1 + x2) , (x1, x2, x3) 2 f0, 1g3

ª
2.1.2 Equivalence of linear codes

Two (n£ k) matrices generate equivalent linear codes if one matrix can be obtained from

the other by elementary operations

1. Permutation of the rows.

2. Multiplication of a row by a non-zero scalar.
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3. Addition of a. scalar multiple of one row to another.

4. Permutation of the columns.

5. Multiplication of any column by a non-zero scalar.

2.1.3 Gaussian elimination over �nite �elds

The Gauss method still works over �nite �elds.

Example 15 Solve the following linear system in Z5 using Gaussian elimination :8>>><>>>:
x+ 2y + 2z = 3

2x+ z = 4

3x+ y + 3z = 1

,

26664
1 2 2 3

2 0 1 4

3 1 3 1

37775

8<: l2 Ã l2 + 3l1

l3 Ã l3 + 2l1
!

26664
1 2 2 3

2 + 3 6 1 + 6 4 + 9

3 + 2 1 + 4 3 + 4 1 + 6

37775

!

26664
1 2 2 3

0 1 2 3

0 0 2 2

37775

8>>><>>>:
x+ 2y + 2z = 3

y + 2z = 3

2z = 2

!

8>>><>>>:
x+ 2y + 2z = 3

y = 3¡ 2z = 1

z = 1

!

8>>><>>>:
x = 3¡ 2y ¡ 2z = 3¡ 2¡ 2 = 4

y = 3¡ 2z = 1

z = 1
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Remark 16 There is no need to minimize roundo¤ errors when you work over �nite

�elds.

2.2 Standard form

Any generator matrixG can be transformed to the standard form
³
Ik A

´0@ resp.
Ik

A

1A
where Ik is the k £ k identity matrix, and A is a k £ (n ¡ k) matrix. (resp. A a

(n¡ k)£ k version)

Example 17

0BBB@
1 1 1 0 1

1 0 0 0 1

1 1 0 1 0

1CCCA
8<: l2 Ã l2 + l1

l3 Ã l3 + l1
!

0BBB@
1 1 1 0 1

0 1 1 0 0

0 0 1 1 1

1CCCA
8<: l1 Ã l1 + l3

l2 Ã l2 + l1
!

0BBB@
1 1 0 0 0

0 1 0 0 0

0 0 1 1 1

1CCCA

fl1 Ã l1 + l2 !

0BBB@
1 0 0 0 0

0 1 0 0 0

0 0 1 1 1

1CCCA
2.2.1 Dual code and parity check matrix

De�nition 18 A matrix H is said to be a parity check matrix if

Hx = 0n,8x 2 C

Proposition 19 Suppose that C ½ An is a linear code with a generator matrix is stand-
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ard form (IkjG) then the matrix (¡Gtj Ir) is a parity check matrix for C where r = n¡k.

Proof. Exercise.

Remark 20 The parity check matrix is a generator matrix of the dual code C?.

De�nition 21 Suppose that C ½ An is a code of length n, de�ne the dual code C? by :

C? = fx 2 An : x.y = 0A,8y 2 Cg

De�nition 22 A linear code is self dual if C? = C.

Example 23 1) Suppose C = f0000, 1100, 0011, 1111g then C? = C.

2) Suppose C = f000, 110, 011, 101g then C? = f000, 111g .

Proposition 24 For any (n, k) code C we have
¡
C?
¢?

= C.

Proof. Clearly C ½ ¡C?¢? since every vector in C is orthogonal to every vector in

C?.

We have also dim
¡
C?
¢?

= n¡ (n¡ k) = k = dim (C) and so
¡
C?
¢?

= C.

2.3 Decoding of linear codes

2.3.1 Cosets and Lagrange�s theorem

De�nition 25 Let H be a subgroup of a group G and g be any element of G. The left

coset gH is de�ned by :

g +H = fg + h : h 2 Hg

Remark 26 The coset h+H is simply the subgroup H.
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Proposition 27 Let H be a subrgoup of G then the relation R on G de�ned by

xRy , y ¡ x 2 H

is an equivalence relation.

Proof. Exercise.

Proposition 28 Let H be a subgroup of G and R be the equivalence relation R de�ned

in the previous proposition. Then the equivalence class of an element g 2 G is the left

coset g +H.

Proof. Exercise.

Corollary 29 Let H be a subgroup of G. Then two left cosets x+H and y+H of H in

G are either equal or disjoint and each element of G is in some left coset of H.

Example 30 Let G be the additive group of integers Z and let n be any positive integer.

Proposition 31 Let H be a subgroup of a group G. For any element g 2 G, there is a

bijection between H and g +H.

Proof. De�ne the map f : H ! g + H by f (h) = g + h using the properties of a

group structures this map is bijective.

Theorem 32 (Lagrange) Let G be a group with a �nite number of elements and let H

be a subgroup of G. Then the number r of distinct left cosets of H is equal to jGj / jHj .
In particular both jHj and r divide jGj .

Proof. The equivalence classes under the relation R partition G. Each equivalence

class is a left coset and each left coset has the same number of elements as H.

It follows that if r is the number of distinct left cosets then jGj = r jHj

De�nition 33 The number of distinct left cosets of a subgroup H in a group G is the

index of H in G. It is usually denoted by jG : Hj .
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2.3.2 Cosets and standard array

De�nition 34 Suppose that C ½ An is a code of length n and consider a 2 An. De�ne

the set a+ C by

a+ C = fa+ x : x 2 Cg

the set a+ C is called a coset of C.

Proposition 35 Properties

1- If a+ C is a coset of C and b 2 a+ C then b+ C = a+ C.

2- Every element ofAn is in some coset of C.

3- Every coset contains exactly jCj elements.
4-Two cosets either are disjoint or coincide.

De�nition 36 The vector having minimum weight in a coset is called the coset leader.

A standard array for a code C is an array of all the vectors in An in which the �rst

row consists of the code C on the extreme left and the other rows are the cosets a+ C

each arranged in corresponding order, with the coset leader on the left.

A standard array may be constructed as follows:

1. Step 1 : List the codewords of C, starting with 0, as the �rst row.

2. Step 2 Choose any vector a1 not in the �rst row of minimum weight. List the coset

a1 + C as the second row starting from a1.

3. Step k From those vectors not in rows 1 until k¡ 1 , choose ak of minimum weight

and list the coset ak + C as in Step 2 to get the third row.
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Example 37 Consider the code generated by the matrix G

G =

0BBBBBBBBB@

1 0

0 1

1 1

0 1

1 0

1CCCCCCCCCA

The code C is hence given by G

0@ x1

x2

1A =

0BBBBBBBBB@

x1

x2

x1 + x2

x2

x1

1CCCCCCCCCA

C =

½³
0 0 0 0 0

´t
,
³
0 1 1 1 0

´t
,
³
1 0 1 0 1

´t
,
³
1 1 0 1 1

´t¾
³
0 0 0 0 0

´ ³
0 1 1 1 0

´ ³
1 0 1 0 1

´ ³
1 1 0 1

+
³
0 0 0 0 1

´ ³
0 0 0 0 1

´ ³
0 1 1 1 1

´ ³
1 0 1 0 0

´ ³
1 1 0 1

+
³
0 0 0 1 0

´ ³
0 0 0 1 0

´ ³
0 1 1 0 0

´ ³
1 0 1 1 1

´ ³
1 1 0 0

+
³
0 0 1 0 0

´ ³
0 0 1 0 0

´ ³
0 1 0 1 0

´ ³
1 0 0 0 1

´ ³
1 1 1 1

+
³
0 1 0 0 0

´ ³
0 1 0 0 0

´ ³
0 0 1 1 0

´ ³
1 1 1 0 1

´ ³
1 0 0 1

+
³
1 0 0 0 0

´ ³
1 0 0 0 0

´ ³
1 1 1 1 0

´ ³
0 1 1 1 0

´ ³
0 1 0 1

+
³
1 1 0 0 0

´ ³
1 1 0 0 0

´ ³
1 0 1 1 0

´ ³
0 1 1 0 1

´ ³
0 0 0 1

+
³
1 0 0 1 0

´ ³
1 0 0 1 0

´ ³
1 1 1 0 0

´ ³
0 0 1 1 1

´ ³
0 1 0 0

Proposition 38 Let C be a linear code with distance d, if x is a vector such that

w (x) ·
·
d¡ 1

2

¸
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then x is a unique element of minimum weight in its coset of C and hence is always a

coset leader in a standard array for C.

Proof. Suppose w (x) · £d¡1
2

¤
and x is not a unique vector of minimum weight in

its coset Ci.

Then there exists some vector y 6= x 2 Ci such that w (x) · w (y) .

Since x and y are in the same coset Ci such that w (y) · w (x)

w (x¡ y) · w (x) + w (y) ·
·
d¡ 1

2

¸
+

·
d¡ 1

2

¸
· d¡ 1

This contradicts the distance d of the code.

2.3.3 Syndromes

De�nition 39 Let H be a parity-check matrix for an (n, k) code over F, for x 2 An the

syndrome s of x is de�ned by s = Hx (or x.H)

Proposition 40 Let H be a parity-check matrix for a linear code C. Then two words x

and y are in the same coset of C if and only if they have the same syndrome (i.e Hx = Hy)

Proof. If x and y are in the same coset of C, then x = l+ ci and y = l+ cj for some

codewords ci and cj and some coset leader l.

Hx = H (l + ci) = Hl +Hci = Hl = Hl +Hcj = Hy

Conversely, suppose that Hx = Hy then Hx¡Hy = 0n hence x¡ y is a codeword.

We have then x ¡ y = ci for some 1 · i · jCj hence x = y + ci and x and y are in

the same coset.
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Example 41 Suppose we have a linear code with a parity check matrix

H =

0BBB@
1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

1CCCA
The syndromes are given by the following table :

Coset leader Syndrome

000000 000

000001 100

000010 010

000100 001

001000 110

010000 011

100000 101

001100 111

Proposition 42 For every code with parity check matrix H, the minimum distance d

equals the size of the smallest subset of columns of H that are linearly dependent.

Proof. We need to show that the minimum weight of a non zero codeword in C is

the minimum number of linearly dependent columns.

Let t be the minimum number of linearly dependent columns in H.

Let c 6= 0Ak 2 C be a codeword with w (c) = d.

By de�nition of the parity check matrixHc = 0Ak and by matrix multiplication this gives

us that
nP
i=1

ciH
i = 0Ak where Hi is the ith column of the matrix H.

So for Hc to be the zero vector we need all Hi with non zero coe¢cients are linearly

dependent.

This means that d ¸ t as the columns corresponding to non-zero entries in c are one
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instance of linearly dependent columns.

For the other direction, consider the minimum set of columns fromH that are linearly

dependent.

This implies that there exists non zero elements c0i1 , ..., c
0
it 2 A such that

c0i1H
i1 + ...+ c0itH

it = 0

Now extend c0i1 , ..., c
0
it to the vector c

0 such that c0j = 0 for j /2 fi1, ...itg .
We have then Hc0 = 0 and thus c0 is a codeword with a weight t thus d · t.

2.4 Some special codes

2.4.1 The (7, 4, 3) Hamming code

The binary Hamming code is generated by the following generating matrix :

G =

0BBBBBBBBBBBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1

1CCCCCCCCCCCCCCCA
hence each word (x1, x2, x3, x4) is associated to the codeword

(x1, x2, x3, x4, x2 + x3 + x4, x1 + x3 + x4, x1 + x2 + x4)

If we denote by c1, ..., c7 the successive letters of the alphabet of the coded word, we
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have the following property : 8>>><>>>:
c2 + c3 + c4 + c5 = 0

c1 + c3 + c4 + c6 = 0

c1 + c2 + c4 + c7 = 0

This code has the following nice geometric interpretation :

The sum of elements of each circle should be 0, let us explain how to use this scheme

with an example.
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Example 43 Suppose we received the message 1000110

Here we have a problem with the green circle because the sum of the four elements inside

is di¤erent from 0.

We have also a problem with the salmon circle however the blue circle is correct.

If we suppose that only one error occurred then it should be at the intersection of the two

circle hence we have to correct x2.

2.4.2 The general binary Hamming code

Let r be a positive integer, de�ne the parity check matrix Hr as the matrix where each

column Hi
r is the binary representation of i, for 1 · i · 2r ¡ 1.

Example 44 For example, for the case r = 3 we have 2r ¡ 1 = 7

1j2 2j2 3j2 4j2 5j2 6j2 7j2
Coff 22 0 0 0 1 1 1 1

Coff 21 0 1 1 0 0 1 1

Coff 20 1 0 1 0 1 0 1
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Hence the code is given by : 8>>><>>>:
c2 + c3 + c4 + c5 = 0

c1 + c3 + c4 + c6 = 0

c1 + c2 + c4 + c7 = 0

Proposition 45 The general binary Hamming code (2r ¡ 1, 2r ¡ r ¡ 1, 3) has distance

3.

Proof. No two columns in H are linearly dependent.

If they were we would have Hi + Hj = 0 but this is impossible since they di¤er in at

least one bit.

(binary representations of integers i 6= j) Thus the distance is at least 3.

It is as at most 3 since H1 +H2 +H3 = 0.

2.4.3 Decoding single error linear codes

Let H be a parity check matrix for a linear code C. Suppose that our channel has a high

probability to introduce only one error.

So a single error correcting code is supposed to be enough for this kind of channels.

Let us denote by r the received word, c the codeword and e the error introduced.

We have then r = c+ e, using the parity check matrix we obtain :

Hr = H (c+ e) = Hc|{z}
0Fn

+He = He

As our channel is supposed to introduce only one error hence the weight of e is equal to

one. Then there exist an index i and a scalar α 2 F such that He = αhi where hi is the

t¡ th column of H.

Using this remark we can give an algorithm for decoding single error codes including

Hamming code.
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Algorithm 46 Let H be the partity-check matrix and let r be the received word.

1) Compute Hr

2) If Hr = 0Fn then r is the transmitted codeword.

3) If Hr = s 6= 0Fn then compare s with the columns of H.

4) If there is some i such that s = αhi then e is the n-tuple with α in position i and 00s

elsewhere, correct r to c = r ¡ e.

5) Otherwise more than one error has occurred.

Example 47 Suppose that we want to encode the information (1010)

Hence the encoded word is given by (1010101), suppose now that the received word with

one error is r = (1110101)

Let us compute Hr.

Hr =

0BBB@
0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

1CCCA

0BBBBBBBBBBBBBBB@

1

1

1

0

1

0

1

1CCCCCCCCCCCCCCCA
=

0BBB@
1

0

1

1CCCA

Hence Hr corresponds to the column 2 of the matrix H.

So the error was made at position 2 of the received word and it is enough to change the

value at position 2

r = (1110101)! c = (1010101)
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2.4.4 Reed Solomon code

Background (Polynomial interpolation)

Let
©
(xi, yi)0·i·n

ª
a set of n+ 1 pairs the main interpolation problem is to �nd a poly-

nomial P such that

P (xi) = yi : 0 · i · n

Proposition 48 For (n+ 1) distinct points (xi, yi) there is a unique polynomial of degree

n satisfying P (xi) = yi : 0 · i · n.

Remark 49 By distinct points we mean that xi, 0 · i · n. are distinct.

Lagrange polynomials

For a set f(xi, yi)g0·i·n of n+ 1 points, we construct the Lagrange polynomials

Lk (x) =
Q

j=0..n
j 6=k

x¡ xj
xk ¡ xj

: k = 0.....n

Lagrange polynomials have the following property :8<: Lk (xk) = 1 8k
Lk (xj) = 0 8k 6= j

Proposition 50 Let f(xi, yi)g0·i·n be a set of of n + 1 points. Then the unique inter-

polation polynomial is given by :

P (x) =
nX

k=0

ykLk (x)
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Interpolation problem over �nite �elds

Proposition 51 A polynomial of degree n with coe¢cients in a �eld F has at most n

roots.

Proposition 52 Every function de�ned from a �nite �eld to itself is a polynomial

Proof. Suppose f is a function de�ned from a �nite �eld to itself, we have then

f (xi) = yi : 1 · i · pn

Considering this as an interpolation problem there is a unique polynomial of degree

m · pn ¡ 1 that interpolates this data

2.4.5 Reed Solomon code

Reed�Solomon codes are a group of error-correcting codes that were introduced in 1960.

They are used in many applications, such as DVDs and QR codes.

The Reed Solomon code is described via its encoder mapping.

Fix integers k · n · q and n distinct elements x1, x2, ...xn 2 GF (q).

Suppose we want to encode the message a1...ak compute P (x) the interpolation poly-

nomial of (xi, ai)1·i·k .

The encoded message is then

(P (x1) , ...P (xk) , P (xk+1) , ...P (xn))

Hence the number of redundant bits is n¡ k.

Example 53 We want to send the following message : [3, 2, 4] using the alphabet Z/5Z

We start by computing the interpolation polynomial of the points (0, 3) , (1, 2) , (3, 4).
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We can use Lagrange method :

L0 (x) =
(x¡ 1) (x¡ 2)

(0¡ 1) (0¡ 2)
= 3x2 + x+ 1

L1 (x) =
(x) (x¡ 2)

(1) (1¡ 2)
= 4x2 + 2x

L2 (x) =
(x) (x¡ 1)

(2) (2¡ 1)
= 3x2 + 2x

P (x) = 3
¡
3x2 + x+ 1

¢
+ 2

¡
4x2 + 2x

¢
+ 4

¡
3x2 + 2x

¢
= 29x2 + 15x+ 3 = 4x2 + 3

Now we replace the values 3 and 4 in P (x) and we have P (3) = 4 and P (4) = 2.

The encoded message is then [3, 2, 4, 4, 2]

2.4.6 Reed Solomon code used for erasures correction

The Reed Solomon is particularly suited to recover data lost to erasures

Example 54 Suppose we received the following message [¥, 2,¥, 4, 2]
Our received message has two erasures.

We start by computing the interpolation polynomial of the points , (1, 2) , (3, 4) , (4, 2).

We can use Lagrange method :

L0 (x) =
(x¡ 3) (x¡ 4)

(1¡ 3) (1¡ 4)
= x2 + 3x+ 2

L1 (x) =
(x¡ 1) (x¡ 4)

(3¡ 1) (3¡ 4)
= 2x2 + 3

L2 (x) =
(x¡ 1) (x¡ 3)

(4¡ 1) (4¡ 3)
= 2x2 + 2x+ 1

P (x) = 2
¡
x2 + 3x+ 2

¢
+ 4

¡
2x2 + 3

¢
+ 2

¡
2x2 + 2x+ 1

¢
= 4x2 + 3

Now we replace the values 0 and 2 in P (x) and we have P (0) = 3 and P (2) = 4.
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The decoded message is then [3, 2, 4] .

Proposition 55 The Reed Solomon code is linear.

Proof. The proof is straightforward using de�nition and construction of Reed So-

lomon code.

2.4.7 Minimum distance of Reed Solomon code

Proposition 56 The minimum distance of a Reed Solomon code is d = n¡ k + 1.

Proof. Let (Pk (x1) , Pk (x2) , ..., Pk (xn)) be a codeword.

As P is of degree k ¡ 1 it has at most k ¡ 1 roots hence :

w (Pk (x1) , Pk (x2) , ..., Pk (xn)) ¸ n¡ k + 1

So d ¸ n¡ k + 1

Corollary 57 The Reed Solomon code match the Singleton bound.

2.4.8 Decoding algorithm for RS code (original version)

The original decoding algorithm used the majority rule.

Suppose we received a code of lenght n containing e errors and we want to decode it.

Pick up all possible k uples of received words and then compute the associated poly-

nomial interpolation, compute again the values corresponding to that polynomial.

We will end up with Ck
n possible values and consider the major one as the most

probable one.

This method need at to run Ck
n polynomial interpolation and hence is not algorith-

mically e¢cient.
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2.4.9 Decoding algorithm for RS code (Berlekamp Welch Al-

gorithm)

De�nition 58 (Polynomial error locator) Consider the n pairs f(xi, yi)g1·i·n where
(yi)1·i·n is the received message of an RS code and P (x) the generator polynomial.

De�ne E (x) =
Q

P (xi)6=yi
(x¡ xi) the polynomial having as roots only the points xi corres-

ponding to the transmission errors .E (x) is called the Polynomial error locator.

Consider now the polynomial Q (x) = E (x)P (x) this polynomial has the following

property

Q (xi) = yiE (xi) : 1 · i · n

Notice that if xi corresponds to an error transmission then we have Q (xi) = 0 =

yiE (xi) = 0 and if xi corresponds to a correct transmission then by de�nition we have

Q (xi) = yiE (xi) .

The main idea of the Berlekamp Welch algorithm is to try to �nd a polynomial Q

and a polynomial E such that

Q (xi) = yiE (xi) : 1 · i · n

Notice that this algorithm may fail.

Algorithm 59 (Berlekamp Welch) .

Input : n ¸ k ¸ 1, 0 < e < n¡k+1
2

and n pairs f(xi, yi)g1·i·n
Output : Polynomial P (x) of degree at most k ¡ 1 or fail

Step 1 : Compute a non zero polynomial E (x) of degree e and a polynomial Q (x) of

degree at most e+ k ¡ 1 such that

yiE (xi) = Q (xi) : 1 · i · n

If such polynomial do not exist output fail.
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Step 2 : If E (x) does not divide Q (x) then output fail else compute P (x) = Q(x)
E(x)

.

If dH ((y1, ..., yn) , (P (x1) , ...P (xn))) > e then output fail else output P (x) .

Example 60 Suppose we are using a Reed Solomon code with k = 2 and n = 5 hence

our code is of distance 3 and can correct one error.

Suppose we received the following message

x 1 2 3 4 5

P (x) 2 4 3 7 6

De�ne the error locator polynomial E (x) = 1+ex and the polynomial Q (x) = a0+a1x+

a2x
2 8>>>>>>>>><>>>>>>>>>:

2 (1 + e) = a0 + a1 + a2

4 (1 + 2e) = a0 + a12 + a22
2

3 (1 + 3e) = a0 + a13 + a23
2

7 (1 + 4e) = a0 + a14 + a24
2

6 (1 + 5e) = a0 + a15 + a25
28>>>>>>>>><>>>>>>>>>:

2 + 2e = a0 + a1 + a2

4 + e = a0 + 2a1 + 4a2

3 + 2e = a0 + 3a1 + 2a2

0 = a0 + 4a1 + 2a2

6 + 5e = a0 + 5a1 + 4a2
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